An Allosteric, Orally Administered CBL-B Inhibitor Remodels the Tumor Microenvironment and Enhances Immune-mediated Tumor Growth Inhibition

Yilin Qi*, Jun Kuai*, Yingzhi Bi*, Huadong Sun, Samira Jaeger, David Greco, Ken Carson, Timothy Reilly, Geraldine Harriman, Fang Wang[†] HotSpot Therapeutics, Inc, 50 Milk St, 16th floor, Boston, MA 02109, USA; *equal contribution; ⁺corresponding author

Introduction

- Casitas B-lineage lymphoma proto-oncogene b (CBL-B), an E3 ubiquitin-protein ligase, is a critical regulator of immunity.
- Genetic ablation or inactivation of CBL-B bypasses the requirement of a co-stimulatory signal for T cell activation in an antigen-dependent manner. As a consequence, CBLB knockout mice spontaneously reject tumor growth, and the effect is largely dependent on CD8+T cells. Depletion of CBLB gene in human CD8+T cells augments the antigen-specific tumor killing.
- The extensive in vitro and in vivo evidence suggest inhibition of CBL-B may present an exciting opportunity to enhance immune-mediated tumor suppression.
- HotSpot has identified a series of allosteric CBL-B inhibitors which exhibited potent in vitro and in vivo properties.

CBL-B Inhibition Enhances Anti-Tumor Immunity Through Several Key Biological Mechanisms

Method

- HotSpot's allosteric CBL-B inhibitor HOT-A was evaluated in a set of syngeneic mouse tumor models
 - H22 murine liver cancer model in female BALB/c mice (H22)
 - CT26 murine colorectal cancer model in female BALB/c mice (CT26)
 - B16F10 murine melanoma cancer model in female C57BL/6 mouse (B16F10)
 - LL/2 murine lung carcinoma model in female C57BL/6 mouse (LL2)
- Tumor growth was compared between vehicle treated animals and animals treated with HOT-A.
- Tumor gene expression was characterized by nanostring analysis.
- Immunohistochemistry and flow-based immunophenotyping were used in profiling the tumor microenvironment.

Results

Figure 1. HotSpot CBL-B Inhibitor, HOT-A, Showed Single Agent Efficacy in Multiple Tumor Models

Female BALB/c (H22 and CT26 tumor model) or C57BL/6 (B16F10 and LL2 tumor model) mice were inoculated with tumor cells, randomized, and treated with vehicle or HOT-A. (A) Tumor growth of vehicle or HOT-A treated animals. Data are displayed as mean ± standard error of the mean (SEM). Statistics were calculated using 2-way ANOVA. Only statistically significant differences among vehicle versus HOT-A treated groups are shown. *p<0.05; ***p<0.0001; ****p<0.00001. (B) Individual tumor growth curves for vehicle and treated groups in each tumor model.

Figure 2. HOT-A Responding Tumor Models Showed Increased Inflammatory Gene Signature

At the end of tumor efficacy study (Figure 1), tumor mRNA was extracted and analyzed using nanoStringTM mouse PanCancer immune profiling panel. (A) Immune response signature scores based on the differential gene expression analysis between HOT-A treated tumor vs vehicle treated tumors. (B) Comparison of log2 fold change (log2FC) of IFN γ , T cell activation, T cell clonal expansion and NK function signature genes between responsive H22 and non-responsive LL2 tumors

Figure 3. HOT-A Treated H22 Tumor Showed Increased Immune Cell Infiltration

At the end of H22 and LL2 tumor efficacy study, tumor mRNA was extracted and analyzed using nanoStringTM mouse PanCancer immune profiling panel. CD45, T cell and NK cell scores were derived from the nanostring tumor analysis.

Figure 4. HOT-A Mediated Tumor Inhibition Requires Competent Immune System

Female BALB/c mice or NCG mice (NOD-Prkdc^{em26Cd52}II2rg^{em26Cd22}/NjuCrl, coisogenic immunodeficient, lack functional/mature T, B, and NK cells, and have reduced macrophage and dendritic cell function) were inoculated with CT26 tumor cells, randomized, and treated with vehicle or HOT-A. Tumor growth curves for vehicle treated animals and animals treated with HOT-A are shown. Data are displayed as mean ± standard error the mean (SEM).

Figure 5. Combination of HOT-A and Anti-PD1 Further Enhanced Tumor Inhibition

Female BALB/c mice were inoculated with CT26 tumor cells, randomized, and treated with vehicle, HOT-A, anti-PD1, or combination of HOT-A and anti-PD1. (A) Tumor growth curves for vehicle group and treated animals are shown. Data are displayed as mean ± standard error the mean (SEM). Statistics were calculated using one-way ANOVA on day 13 vehicle versus treated groups. ***p<0.0001; ****p<0.00001. (B) CD4+% and CD8+% cells in the tumors at day 10 by immunohistochemistry.

Figure 6. Combination of HOT-A and Anti-PD1 Promoted T Cell Infiltration and Reduced M2 Type Tumor Associated Macrophages

Female BALB/c mice were inoculated with CT26 tumor cells, randomized, and treated with vehicle, HOT-A, anti-PD1, or combination of HOT-A and anti-PD1. The frequency of TIL (CD45⁺) in the tumors, and the frequency of CD3, CD8 T cells, and CD206⁺MHCII^{low/-} (M2 macrophage) within CD45⁺ populations. Statistics were calculated using t test. Only statistically significant differences among untreated and treated groups are shown. **p<0.01; ***p<0.001.

Conclusions

- HotSpot's CBL-B inhibitor, HOT-A, inhibited tumor growth in multiple murine syngeneic tumor models, including H22, CT26 and B16F10. The tumor inhibition was immune-mediated.
- Profiling tumor microenvironment gene expression demonstrated T cell function pathway, interferon pathway, antigen processing pathway were among the significantly up-regulated immune signature with HOT-A treatment in vivo.
- CBL-B inhibitor and anti-PD1 combination further enhanced tumor inhibition in selected tumor models. HOT-A and anti-PD1 combination further promoted T cell infiltration and shifted immune suppressive M2 macrophage to immune promoting M1 macrophage.
- Preclinical characterization both in vitro and in vivo suggests the monotherapy potential of this CBL-B inhibitor as well as the potential as a combinational agent with anti-PD1 antibody.

References

- Lutz-Nicoladoni C, Wolf D, Sopper S. Front Oncol. 2015;5:58 2. Bachmaier K, Krawczyk C, Kozieradzki I, et al. Nature. 2000:403(6766):211-216.
- 3. Chiang YJ, Kole HK, Brown K, et al. Nature. 2000;403(6766):216-
- 4. Wohlfert EA, Callahan MK, Clark RB. J Immunol. 2004;173(2):1059-
- 5. Wohlfert EA, Gorelik L, Mittler R, Flavell RA, Clark RB. J Immunol 2006;176(3):1316-1320.
- 6. Loeser S, Loser K, Bijker MS, et al. J Exp Med. 2007;204(4):879-891. 7. Chiang JY, Jang IK, Hodes R, Gu H. J Clin Invest. 2007;117(4):1029-
- 8. Paolino M, Choidas A, Wallner S, et al. Nature. 2014;507(7493):508-