Phase 1/2 Study of HST-1011, an Oral CBL-B Inhibitor, Alone and in Combination with Anti-PD-1 in Patients with Advanced Solid Tumors

Jason Luke,¹ Rachel Sanborn,² Jordi Rodón,³ Manish Patel,⁴ Parul Agarwal,⁵ Evan Friedman,⁶ Connacht Peterson,⁷ Heather Kelley,⁶ Emma Wright,⁶ Hadi Danaee,⁶ Huadong Sun,⁶ Carolin Barth,⁶ Timothy Reilly,⁶ Amanda J. Redig,^{6*} Claire Friedman^{8,9} ¹University of Pittsburgh Medical Center, Pittsburgh, PA; ²Earle A Chiles Research Institute, Providence Cancer Institute, Sarasota, FL; ⁵ Department of Medicine, University of Pennsylvania, Philadelphia, PA; ⁶HotSpot Therapeutics, Inc, Boston, MA; ⁷Elite BioPharma Consulting, Boston, MA; ⁸Memorial Sloan Kettering Cancer Center, New York, NY; *corresponding author

Introduction

- The E3 ligase Casitas B-lineage lymphoma protooncogene B (CBL-B) is a master negative regulator of the immune system and thus an attractive target with monotherapy potential to address suboptimal outcomes to immune checkpoint inhibitors (ICI).^{1,2}
- CBL-B controls T-cell/NK cell activation and costimulatory pathways, including the signaling threshold for T-cell receptor (TCR) activation.^{2,3}
- CBL-B inhibition uncouples TCR stimulation from the requirement for CD28 co-stimulation while reducing T-cell susceptibility to immunosuppression mediated by PD-1, immunosuppressive cytokines, and T_{req} cells.^{3,4}
- Ablation of CBL-B results in enhanced IFN γ and perform release by primary human NK cells, promoting NK cellmediated cancer cell killing.^{5,6}
- Accordingly, targeting CBL-B may enable immune activation even in tumors with low antigen levels, low intratumoral inflammation, inadequate co-stimulation and/or active immunosuppression associated with poor response/resistance to existing ICIs (Figure 1).
- HST-1011 is a novel, potent, selective, orally bioavailable allosteric small molecule CBL-B inhibitor that has been shown to robustly increase anti-tumor immunity in vitro and in vivo as monotherapy, including in model systems where other ICIs have minimal effect.

Figure 1: CBL-B Inhibition Enhances Anti-tumor Immunity Through Several Key Biological Mechanisms

Overall Study Design

- SOLAR1 (NCT05662397) is a first-in-human, multicenter Ph1/2 trial evaluating HST-1011, an oral CBL-B inhibitor, alone and in combination with an anti-PD-1 agent in patients with advanced solid tumors.
- The Phase 1 (A1) portion of the study is open, with competitive enrollment.
- In the Phase 1 portion of the study, patients will receive HST-1011 as either monotherapy (Part A) or in combination with cemiplimab (Part B).

Part A: HST-1011 Monotherapy

HST-1011 monotherapy dose escalation, utilizing a Bayesian optimal interval design (BOIN),⁷ with optional dosing cohorts allowing the ability to assess alternative dosing strategies.

HST-1011 monotherapy dose optimization with up to 4 cohorts utilizing dose(s)/schedule(s) deemed safe in Part A1 but focused on histology-specific patient populations to generate additional PK, PD, and efficacy data within a potential Recommended Phase 2 Dose (RP2D) range.

Part B: HST-1011/Cemiplimab Combination

HST-1011 dose escalation in combination with cemiplimab given per the standard dose and intravenous regimen, as in Part A1 with a BOIN design and optional dosing cohorts. Of note, the dose of HST-1011 that is selected as the starting dose for the dose escalation will be at minimum 2 dose levels below a previously cleared dose of HST-1011 monotherapy.

• The Phase 2 portion of this study will evaluate the preliminary anti-tumor activity of HST-1011 in combination with an anti-PD-(L)1 antibody or other standard of care therapies.

Objectives and Endpoints

Objectives

Primary	 To characterize the initial safety and tolerability of HST- monotherapy (A1, A2) or in combination with cemiplimab
	 To characterize the pharmacokinetics (PK) of HST-1011 following oral administration of HST-1011 monotherapy (A A2) or combination therapy (B)
Selected Secondary and Exploratory (Figure 2)	 To determine the preliminary objective response rate (ORF disease control rate (DCR), duration of response (DoR) of F 1011 monotherapy or combination therapy
	 To evaluate the effects of HST-1011 monotherapy or combination therapy on select peripheral pharmacodynam (PD) markers
	 To evaluate the effects of HST-1011 monotherapy or combination therapy on select PD biomarkers within the tu

microenvironment

Figure 2: HST-1011 Early Development Plan Focused on Proof of Mechanism And Refinement of Patient Segments

References

- 1. Bachmaier K, Krawczyk C, Kozieradzki I, et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. *Nature*. 2000;403(6766)211-216
- 2. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. *Cell*. 2017;168:70–723.
- 3. Chiang YJ, Kole HK, Brown K et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature. 2000;403(6766:216-220

CI251

HOTSPOT THERAPEUTICS

Endpoints

-1011 (B)	 Incidence of dose-limiting toxicities (DLTs), treatment-emergent adverse events (TEAEs), serious adverse events (SAEs), and changes between baseline and postbaseline laboratory assessments, electrocardiograms (ECGs), vital signs, and physical exams
₹), -IST-	 PK parameters including but not limited to: maximum observed plasma concentration (Cmax), time of maximum observed plasma concentration (Tmax), area under the concentration-time curve (AUC0-t) or in 1 dosing interval (AUCtau), concentration observed at trough (Ctrough, Ctau) ORR per Investigator assessed Response Evaluation Criteria in Solid Tumors (RECIST) v 1.1
nic umor	 Serial monitoring of peripheral blood cytokines / chemokines; peripheral immune cell profiling; changes in global gene expression profiles in peripheral immune cells; in-depth analysis of screening and on-treatment tumor biopsies with assessment of intratumoral immune cell numbers and phenotypes and intratumoral gene expression changes

4. Wohlfert EA, Callahan MK, Clark RB. Resistance to CD4+CD25+ regulatory T cells and TGF-beta in cbl-b -/- mice. J Immunol. 2004;173(2):1059-1065.

- 5. Paolino M, Choidas A, Wallner S, et al. Nature. 2014;507(7493):508-512 6. Lu T, Chen L, Mansour AG, et al. J Immunol. 2021;206(4):677-685.
- 7. Yuan Y, Hess KR, Hilsenbeck SG, Gilbert MR. Bayesian Optimal Interval Design: A simple and Well-Performing Design for Phase 1 Oncology Trials. *Clin Cancer Res.* 2016;22(17)4291-4301.